Math 115
Fall 2018
Lecture 10

$$
\begin{aligned}
& ? a^{2}+b^{2}=c^{2} ? \\
& y=m x+b \cdot d=r t
\end{aligned}
$$

Review:
Draw $\overline{A B}$ with

$$
A(-8,6), B(4,0)
$$

$$
\begin{aligned}
m=m\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=M\left(\frac{-8+4}{2}, \frac{6+0}{2}\right) & =m\left(\frac{-4}{2}, \frac{6}{2}\right) \\
& =M(-2,3)
\end{aligned}
$$

Given $A(-6,-8), B(0,8)$

1) Draw $\bar{A} \bar{B}$
2) Sind the distance from $A t_{0} B$.
3) find the midpoint of $\overline{A B}$.

$$
m\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

$$
=\sqrt{36+256}
$$

$$
=m\left(\frac{-6+0}{2}, \frac{-8+8}{2}\right)=M\left(\frac{-6}{2}, \frac{0}{2}\right)
$$

$$
=m(-3,0)=17.1
$$

Graph $x=6, x+3=0, y=-5$, and $y-4=0$ in the Same Coordinate System.

$$
\begin{aligned}
& x-\text { only } \rightarrow \text { V.L. } \\
& y \text {-only } \rightarrow \text { H.L. } \\
& x=6 \text { V.L. } \\
& x+3=0 \rightarrow x=-3 \text { V.L. } \\
& y=-5 \text { H.L. } \\
& y-4=0 \rightarrow y=4 \text { H.L. }
\end{aligned}
$$

Use intercept methods to graph

$$
\begin{aligned}
& 4 x-3 y=12 \text { and } 2 x+5 y=-10 \quad y \\
& \begin{array}{c|c}
x & y \\
\hline 0 & -4 \\
\hline 3 & 0
\end{array} \\
& \begin{array}{c|c}
x & y \\
\hline 0 & -2 \\
\hline-5 & 0
\end{array}
\end{aligned}
$$

Graph $3 x-7 y=21$ and $7 x+3 y=21$ using intercept methods.

$$
\begin{array}{c|cc|c}
x & y & x & y \\
\hline 0 & -3 & 0 & 7 \\
\hline 7 & 0 & 3 & 0
\end{array}
$$

Graph

$$
y=\frac{2}{5} x-2
$$

by 2 -Point method.

x	y
0	-2
5	0
-5	

$$
y=\frac{2}{5}(-5)-2=-2-2=-4
$$

Given $3 x+4 y=8$
(1) Solve for y.
(2) Use 2-point method To graph.

$$
\begin{aligned}
& 4 y=-3 x+8 \\
& y=\frac{-3}{4} x+\frac{8}{4} \quad y=\frac{-3}{4} x+2 \\
& \left.\frac{x}{0} \right\rvert\, \frac{y}{2} \\
& \hline 4 \mid-1
\end{aligned}
$$

$$
y-\frac{-3}{4} x+2
$$

Given $3 x-5 y=0$

1) Solve for y
2) Graph using

2 -Point method.

$$
\begin{aligned}
-5 y & =-3 x \\
y & =\frac{-3}{-5} x \\
y & =\frac{3}{5} x
\end{aligned}
$$

Slope of a slant line is the ratio of rise
Run

$$
\text { Rise Run } \quad B\left(x_{2}, y_{2}\right)
$$

Draw a line that contains $(0,3)$ and $(5,6)$. Show rise ξ_{1} run of its slope. Find the slope $(0,3) \Sigma_{1}(5,6)$

Graph a line that contains $(-4,7)$ and $(3,2)$. Show rise ! run of its slope. find the slope.

$$
\begin{aligned}
& \left(-\frac{(4,7) \dot{\varepsilon}(3,2)}{7-2}\right. \\
& m=\frac{-4-3}{-7}=\frac{5}{7} \underbrace{2}_{R} \\
& (-4,7)^{2} \dot{\varepsilon}_{1}(3,2) \\
& m=\frac{2-7}{3-(-4)}=\frac{-5}{3+4}=\frac{-5}{7}
\end{aligned}
$$

$x=a \quad$ Vertical line
$y=b \quad$ Horizontal line

$$
\begin{aligned}
& A x+B y=C \quad \text { Standard form } \\
& y=m x+b \quad \text { slope-Int. form } \\
& y-y_{1}=m\left(x-x_{1}\right) \quad \text { Point-slope form }
\end{aligned}
$$

Graphing $y=m x+b$ by using y-Int z_{1} slope:

1) Plot Y-Int $(0, b)$

$$
y=\frac{2^{3}}{3} x+4
$$

2) from the Y-Int use rise ξ_{1} run of slope to reach anoter Point
3) Connect these points, then extend.

Graph $y=\frac{3}{7} x-2 \quad$ \& $y=\frac{3}{7} x+4$ in the
Same Coordinate system.

Vertical line \longrightarrow No slope
\longrightarrow undefined slope
Horizontal line \rightarrow Zero slope

$$
\longrightarrow m=0
$$

Two slant lines are parallel when
a) Different y-Int, and
b) Same Slope.

Two slant lines are perpendicular when
a) Slopes are negative reciprocal of each other, or
b) Product of their slopes is -1 .

Graph point-slope equations:

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

1) Point $\left(x_{1}, y_{1}\right)$

$$
y-3=\frac{2}{5}(x-4)
$$

2) Slope m

Point $(4,3)$
3) Plot the point slope $m=\frac{2}{5}$
4) from the point, use rise $\dot{\varepsilon}_{1}$ run of slope to find another Point
5) Connect \&' Extend.

Graph $y-5=\frac{-5}{2}(x+6)$
Point $(-6,5)$
slope $m=\frac{-5}{2}$

Graph

$$
y+4=\frac{4}{3}(x+3)
$$

Point ($-3,-4$)
slope $\frac{4}{3}$

More on Slope:
when no slope \rightarrow VIL.
when undefined slope \rightarrow VIL.
when Zero slope \rightarrow H.L.
when $m=0 \longrightarrow H . L$.
when $m>0 \longrightarrow$ Increasing line
when $m<0 \longrightarrow$ Decreasing line
when $\quad m_{1}=m_{2}$ with different $\underset{\text { Slant lines }}{\rightarrow}$ y-Ints. \quad slant lines
when $\quad m_{1} \cdot m_{2}=-1 \rightarrow$ Perpendicular slant lines

Graphing inequalities with two variables: $y<\frac{3}{2} x-1$

Slant line broken/ Dashed

Graph \& shade

$$
\begin{aligned}
& y \geq-\frac{2}{5} x+4 \\
& Y \text {-Int }(0,4) \\
& \text { Slope } \frac{-2}{5}
\end{aligned}
$$

slant line, Solid

Graph is shade $y<4$
Horizontal broken shade below

Graph E. shade
$x \geq 3$
Solid,
Vertical,
Shade right

Raul has 31 coins.
Dimes, Nickels, and Quarters.
\# of Nickels is twice $\#$ of dimes.
\# of Quarters is 3 more than \# of dimes.

1) How many of each?

Dimes $\rightarrow x$
2) How much in total?

Nickels $\rightarrow 2 x$
Quarters $\rightarrow x+3$

$$
\begin{aligned}
\underbrace{\text { Dimes }+\underbrace{\text { Nickels }}+\underbrace{\text { Quarters }}_{2 x}}_{x} & =31 \text { Coins } \\
4 x+3=31 \quad 4 x & =31 \quad x=7
\end{aligned}
$$

He has 7 dimes, 14 Nickels, and 10 quarters.

$$
\begin{aligned}
7(10 \$)+14(5 \$)+10(25 \$) & =390 \Phi \\
& =\$ 3.90
\end{aligned}
$$

Find two consecutive odd integers such that when twice the Smaller one is reduced by 5 times the larger one, we get -109.

$$
x \xi_{1} x+2
$$

2. Smaller $-5 \cdot$ larger $=-109$

$$
\left.\begin{array}{c}
2 x-5(x+2)=-109 \\
2 x-5 x-10=-109 \\
-3 x=-109+10
\end{array}\right\} \begin{array}{r}
x=33 \\
33 \xi 35
\end{array} \begin{array}{r}
-3 x=-99 \\
x=1
\end{array}
$$

The Perimeter of a rectangular bill board is 66 ft.
Its length is 1 ft longer than 3 times its width.
(1) Find its dimensions.

(2) Sind its area.

$$
\sum_{25 \mathrm{ft}} 8 \mathrm{ft}
$$

Dimensions: \&ft by

$$
\text { Area }=L W
$$

$$
\begin{gathered}
P=66 \\
2 L+2 w=66 \\
2(3 x+1)+2 x=66 \\
6 x+2+2 x=66 \\
8 x=64 \\
x=8
\end{gathered}
$$

$$
=25(8)=200 \mathrm{ft}^{2}
$$

Perimeter of a triangular garden is 54 meters. 3 sides are three consecutive even integers.
Sind all 3 sides.

$$
\frac{x / x+2}{x+4}
$$

$$
x \text { must be even }
$$

$$
\begin{gathered}
P=54 \\
a+b+c=54 \\
x+x+2+x+4=54 \\
3 x+6=54 \\
3 x=48 \\
x=16
\end{gathered}
$$

work on Study Guides

